PD-158

(521) M.Sc. PHYSICS (FIRST SEMESTER)

Examination DEC. 2020

Paper-I: Mathematical Methods-I

Time: Three Hours

Maximum marks: 80

SECTION-A

1. Answer the following questions:

 1×10

- (a) What do you mean by linearly dependent vectors?
- (b) Define triangular matrix.
- (c) State True or False: For any matrix A, AA^T and A^TA are always symmetric.
- (d) State True or False: Rank of a matrix is the largest order of any non-vanishing minor of the matrix.
- (e) Find the value of $\frac{2}{5}P_3(x) + \frac{3}{5}P_1(x)$.
- (f) What is the value of $L_1(x)$.
- (g) Bessel's function of second kind and order zero is known as______.
- (h) Find the Laplace transformation of $f(t)\delta(t-a)$.
- (i) Write two advantages of Fourier series.
- (j) Show that $x\delta'(x) = -\delta(x)$.

2. Answer the following questions:

 2×5

- (a) Define dimension and basis of a vector space.
- (b) Given $A = \begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{bmatrix}$. Check whether A is singular or not.
- (c) Show that the necessary and sufficient condition for the existence of the inverse of a matrix **B** is that **B** is non-singular.
- (d) Write the Dirichlet's conditions for a Fourier expansion.
- (e) Find the value of $L\{t^3\delta(t-2)\}$.

SECTION-B

Answer the following questions:

 15×4

Unit-I

- **3.** (a) Define vector space V_n over a field F.
 - (b) Show that the three-dimensional vectors $x^1 = \{2,0,-2\}$, $x^2 = \{0,2,0\}$, and $x^3 = \{2,0,2\}$ are linearly independent.
 - (c) Express the vector $\{0,0,3\}$ as a linear combination of the vectors x^i given above.
 - (d) If $\{\alpha_1,\alpha_2,\dots,\alpha_n\}$ be a set of n-independent vectors & β be a non-null vector such that $\beta=a_1\alpha_1+a_2\alpha_2+\cdots\dots a_n\alpha_n$, $(a_j\neq 0)$ then the vectors $\alpha_1,\alpha_2,\dots,\alpha_{j-1},\beta,\alpha_{j+1},\dots,\alpha_n$ are independent. 6+2+2+5

- (a) What do you mean by symmetric and skew-symmetric matrix?
- (b) Solve the following system of equations by matrix method:

$$2x + 3y + z = 9$$

 $x + 2y + 3z = 6$
 $3x + y + 2z = 8$

5 + 10

Unit-II

4. Obtain the generating function of Legendre's polynomial $P_n(x)$

$$(1-2xt+t^2)^{-1/2}=\sum_{n=0}^{\infty}t^nP_n(x)$$

and hence derive

(a)
$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x)$$

(b) $nP_n(x) = xP'_n(x) - P'_{n-1}(x)$
OR

Deduce the differential formula for Laguerre polynomial $L_n(x)$ and hence find the value of $L_2(x) \& L_3(x)$.

Unit-III

- **5.** (a) Write Bessel's differential equation of order n and find the complete solution when n has an integral value.
 - (b) Find the value of $J_{-1/2}(x)$.

10 + 5

OR

Prove the orthogonality property for Hermite polynomial.

15

Unit-IV

6. (a) Define Laplace transform and discuss its linearity and translation properties.

(b) Using Laplace transform, evaluate
$$\int_0^\infty e^{-t} (\frac{\cos at - \cos bt}{t}) dt$$
 10 + 5

ЭR

(a) Expand $f(x) = \sin x$, $0 < x < \pi$ in Fourier cosine series.

(b) Evaluate
$$\int_{-\infty}^{+\infty} e^{-x} \delta(x^3 - x) dx$$
 10 + 5