PD-159-S.E.-CV-19
 M.Sc. PHYSICS ($1^{\text {st }}$ Semester)
 Examination, Dec.-2020
 Paper-II
 CLASSICAL MECHANICS

Time : Three Hours]
[Maximum Marks : 80
[Minimum Pass Marks: 29
Note : Answer from both the Sections as directed. The figures in the right-hand margin indicate marks.
Section-A

1. Answer the following short answer type questions:-
$2 \times 10=20$
(a) What are generalized co-ordinates? What is the advantage of using them?
(b) What are constraints? How do they affect motion of a mechanical system?
(c) Write Euler-Lagranges equation of motion of a system, using generalized co-ordinates.
(d) Use Lagrange's equation for obtaing the equation of simple harmonic motion with period $T=2 \pi \sqrt{\frac{1}{g}}$ of simple pendulum.
(e) State and discuss the principle of least action.
(f) Define phase space.
(g) What are the physical significance of \mathbf{H} ?
(h) Obtain the equations of motion of two dimensional is atrophic harmonic oscillator in Cartesian coordinates.
(i) State the definition and properties of Poisson Bracket.
(j) If $[\phi, \Psi]$ be the Poisson Bracket, then prove that

$$
\frac{\partial}{\partial t}[\phi, \Psi]=\left[\frac{\partial \phi}{\partial t}, \Psi\right]+\left[\phi, \frac{\partial \Psi}{\partial t}\right]
$$

Section-B
Answer the following long-answer type questions.
2. State and prove conservation of linear and angular momentum is Lagrangian formulation.

OR
Obtain Lagrange's equation from D^{\prime} 'Alembert's principle for conservative system.
3. Deduce Hamilton's principle from D^{\prime} Alembert principle.

OR
Write down Lagrange's equation for motion of a charged particle is an electromagnetic field.
4. Write application of Hamilton equation of motion for-
(a) Simple pendulum
(b) Compound pendulum OR

Write and explain Hamilton canonical equations of motion in cylindrical and spherical co-ordinates.
5. Show invariance of Poisson Brackets with respect to canonical transformations.

OR
(a) Show that the transformation defined by

$$
\begin{aligned}
& q=\sqrt{2 p} \sin \theta \\
& p=\sqrt{2 p} \cos \theta \text { is canonical. }
\end{aligned}
$$

(b) Jacobi Identity.

