

AF-3557

M.A./M.Sc. (Previous)
Term End Examination, 2017-18

MATHEMATICS

Paper - III

Topology

Time: Three Hours] [Maximum Marks: 100 [Minimum Pass Marks: 36]

Note : Answer any **five** questions. All questions carry equal marks.

- 1. (a) If X is a non-empty countable set and T is a collection consisting of the empty set and all those subsets of X whose complements are countable, then T is a topology on X.
 - (b) Let T_1 and T_2 be two topologies on a non-empty set X, then show that $T_1 \cap T_2$ is also a topology on X, but $T_1 \cup T_2$ is not necessarily a topology on X.

306_BSP_(4)

(Turn Over)

- 2. (a) Given a non-empty set X and A, $B \subset X$ being arbitrary, if the Kuratowski closure operators have the properties
 - (i) $\overline{\phi} = \phi$,
 - (ii) $A \subseteq \overline{A}$,
 - $(iii) \stackrel{=}{A} = \overline{A}$
 - (iv) $\overline{A \cup B} = \overline{A} \cup \overline{B}$,

then there exists a unique topology T on X such that $\forall A \subset X$, A coincides with T-closure of A.

- (b) Show that a homeomorphic image of a first countable space is first countable.
- **3.** (a) Prove that every second countable space is a Lindelof space.
 - (b) Let (X, T) be a topological space and $Y \subset X$, then show that the collection $T_0 = \{A \cap Y : A \in T\}$ is a topology on Y.
- **4.** (a) Prove that every metric space is a Hausdorff Space.
 - (b) Let F_1 , F_2 be any pair of disjoint closed sets in a normal space X. Then \exists a continuous map $f: X \rightarrow [0, 1]$, such that f(x) = 0, for $x \in F_1$ and f(x) = 1 for $x \in F_2$.

- **5.** (a) Prove that any closed subset (subspace) of a compact space is compact.
 - (b) Show that a sequentially compact topological space (X, T) is countably compact.
- **6.** (a) Prove that a continuous image of connected space is connected.
 - (b) A topological space X is locally connected if and only if the components of every open subspace of X are open in X.
- 7. (a) If $\{(X_{\alpha}, T_{\alpha}) : \alpha \in \Lambda\}$ is a collection of topological space such that $X = x \{X_{\alpha} : \alpha \in \Lambda\}$, then X is compact relative to the topology if and only if each coordinate space X'_{α} is compact.
 - (b) Show that the product of two Hausdorff spaces is also a Hausdorff space.
- **8.** (a) Prove that the product space $X = x \{X_{\alpha} : \alpha \in \Lambda\}$ is completely regular if and only if each coordinate space X_{α} is completely regular.
 - (b) Let (X, T) be a product topological space of the topological spaces (X_1, T_1) and (X_2, T_2) , then X is compact if and only if X_1 and X_2 both are compact.

(4)

- 9. (a) Let (X, T) be a topological space and $Y \subset X$, then $P \in X \Rightarrow P \in \overline{Y}$, if and only if \exists a net in Y converging to P.
 - (b) Let F be a filter on a non empty set X and $A \subset X$, then \exists a filter F^* finer than F such that $A \in F^*$ if and only if $A \cap B \neq \emptyset \forall B \in F$.

10. State and prove Tietze extension theorem.