PC - 480 CV-19

M.A./M.Sc. (Fourth Semester)

Examination June2020 MATHEMATICS

Compulsory Paper-I

Integration Theory and Functional Analysis-II

Time : Three Hours] [Maximum Marks : 80 [Minimum Pass Marks : 29

Note: Answer from both the Sections as directed. The figures in the right-hand margin indicate marks.

Section-A

1. Fill in the blank of the following:-

[1x10=10]

- (i) Let N be a normed linear space and f(x) = 0, π $f \in N^*$ Then $x = \dots$
- (ii) The Norm of Identity bounded linear operator on a linear space $N \neq \{0\}$ is
- (iii) Normed linear space is separable if it's is separable.
- (iv) An operator T on Hilbert space H is normal if and only if $||T^*x|| = \dots \forall x \in H$
- (v) If P is perpendicular projection on M Then I P is a on M^{\perp}
- (vi) if $\{e i\}$ be complete orthonormal set in Hilbert space and for $x \in H$, $x \perp \{e i\}$ then
- (vii) If N is normal operator on a Hilbert Space H Then $||N^2|| = \dots$
- (viii) If S_1 and S_2 are non-empty subset of Hilbert space H $S_1C.S_2 \Rightarrow$
- (ix) If M is a linear subspace of a normed linear space M and $x + M \in N/M$ Then $||x + M|| = \dots$
- (x) Every complete subspace of a normed linear space is
- 2. Answer the following questions-

[2x5=10]

- (a) Define Banach space with example.
- (b) In Hilbert space H prove that $-(\alpha, a\beta b\Upsilon) = a(\alpha, \beta) \overline{b}(\alpha, \Upsilon) \Upsilon \forall a, b \in c, \alpha, \beta, \lambda \in H$
- (c) let $T_1, T_2 \in \beta$ (H) then prove that- $(T_1 + T_2)^* \equiv T_1^* + T_2^*$
- (d) Prove that for x, y in Hilbert space H $\|x + y\|^2 = 2 \|x\|^2 + 2 \|y\|^2$
- (e) Prove that an orthonormal set can not contain zero verctor.

Section-B

Answer all questions-

[12x5=60]

3. State and prove Hahn Banach space.

Or

Show that $l^n p$ is a Banch space.

4. State and prove closed graph Theorem

Or

let N be a non zero normed linear space and $S = \{ x \in N : ||x|| \le 1 \}$ be a linear subspace of N. Then prove that N is Banach space if and only if S is complete.

5. let M be a linear subspace of a normed linear space N and let f be a functional defined on M Then f can be extended to a functional f_0 on the whole space N such that $||f|| = ||f_0||$

Or

let M be a proper closed linear subspace of a Hilbert space H then prove that there exist a non zero vector Zo in H such that Zo \perp H

6. state and prove uniform bounded principle.

Or

let Y be a fixed vector in a Hilbert space H and let fy be a scalar valued function on H defined by-

fy
$$(x) = (x, y) \forall x \in H$$

Then prove that fy is a functional I n H* and || fy || = || y ||.

7. Prove that A closed convex subset C of a Hilbert space H contains a unique vector of smallest norm.

Or

An operator on Hilbert space is normed if and only if it's real and imaginary parts commutes.