PD-480-CV-19

M.A./M.Sc. (4th Semester)

Examination, June-2021 MATHEMATICS

Paper-I

INTEGRATION THEORY & FUNCTIONAL ANALYSIS-II

Time: Three Hours] [Maximum Marks: 80 [Minimum Pass Marks: 29

Note: Answer from both the Sections as directed. The figures in the right-hand margin indicate marks.

Section-A 1. Fill in the Blanks of the following:-1x10=10(a) A normed linear space is a Banach space if and only if every.....series is summable (b) Let N be a normed linear space and $x, y \in N$ Then $|||x||||y||| \le \dots$ (c) Every complete subspace of a normed linear space is...... (d) There exist a.....real valued function whose fourier series diverges to zero (e) All norms are.....on a finite dimensional space. (f) If S is non empty subset of a Hilbert space H then $S \cap S' \subset \dots$ (g) Set of all unitary operator form a..... (h) If T is positive operator on Hilbert space H then I + T is...... (i) An operator T on Hilbert space H is normal if and only if $||T^*x|| = \dots \forall x \in H$. (j) Normed linear space is separable if it's.....is separable. 2. Answer the following questions:-2x5 = 10(a) Define l₂ space. (b) State closed graph theorem. (c) State uniform bounded principle. (d) In Hilbert space H prove that $H^{\perp} = \{0\}$. (e) If T is normal operator on a Hilbert space H then prove that $||T^*x|| = ||Tx||$ Section-B 12x5=60Answer the following questions:-3. Prove that l^{∞} is Banach space. OR

Let X be a normed space over the field K and let M be a closed subspace of X. $\|\cdot\|: \frac{X}{M} \to R$ defined by $\|x + M\|_1 = \inf\{\|x + m\|: m \in M\}$

Then $\left(\frac{X}{M}, \|\cdot\|_1\right)$ is a normed space further if X is a Bnanch space then $\frac{X}{M}$ is a Banach space

4. State and prove open mopping theorem.

OR

Let M be a closed linear subspace of a normed linear space N and let x_0 be a vector not in M. If d is distance from x_0 to M, then prove that there exist a function $f \in N^*$ such that $f(M) = \{0\}$, $f(x_0) = d$ and ||f|| = 1.

5. Let M be a normed linear space and A be a Banach space and let $T: M \to A$ is an onto isomorphism such that T and T^{-1} are continuous. Then prove that M is also a Banach space.

https://www.abvvonline.com

Let $\{x_n\}$ be a weakly convergent sequence in a normed space X then prove that

- (a) The weak limit of $\{x_n\}$ is unique.
- (b) $\{||x_n||\}$ is a bounded sequence in R
- (c) Every subsequence $\{x_n\}$ of converges weakly to the weak limit of $\{x_n\}$.
- 6. State and prove Riez representation theorm.

OR

Let M be a proper closed linear subspace of a Hilbert space H then prove that there exists a non zero vector z_0 in H such that $z_0 \perp M$.

7. Let T be an operator on a Hilbert space H. Then \exists a unique operator T^* on H such that $(Tx, y) = (x, T^*y), \ \forall x, y \in H$

Prove that adjoint operator $T \to T^*$ on B(H) has following properties.

- (i) $(T_1 + T_2)^* = T_1^* + T_2^*$
- (ii) $(aT)^* = \overline{a}T^*$
- (iii) $(T_1T_2)^* = T_2^*T_1^*$
- (iv) $||T^*|| = ||T||$

https://www.abvvonline.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पायें, Paytm or Google Pay से