PE-364

(513) M.A./M.Sc. MATHEMATICS (Third Semester) EXAMINATION, DEC.-2021 OPERATION RESEARCH-I

Paper - IV

Time · Three hours!

		inice nours	ı ap	-	Waximum Wanks: 00
Not	e:	Answer from both the marks.	Sections as direc	cted. The figures in the righ	nt-hand margin indicate
			Sec	tion–A	
1.		Choose the correct an	swer:		1×10=10
	(1)	The name "Operation	Research" is coin	ned in the year:	
		(a) 1945	(b) 1935	(c) 1940	(d) 1950
•	(2)	The person who coine	ed the name "Ope	ration Research" is:	
		(a) Bellman		(b) Newman	
		(c) McClasky and Tre	frhen	(d) None of the above.	
	(3)	Following is a method	of solving LPP:	:	
		(a) Vogel's Approxim	ation Method	(b) Maximum Method	
		(c) Simplex Method		(d) None of these	
	(4)	When the elements of n	et evaluation row	of simplex tables are equal, th	ne situation is known as:
		(a) Tie	(b) Degeneracy	(c) Break	(d) Shadow Price
	(5)	For a minimization pro	oblem, the objecti	ve function coefficient for a	n artificial variable is :
		(a) +M	(b) -M	(c) Zero	(d) None of the above
+	(6)	If negative value appe solution is:	ars in solution val	lue column of the simplex ta	ble is negative, then the
		(a) Infeasible	(b) Unbounded	(c) Optimal	(d) None of the above
	(7)	Dual of dual is:			
		(a) Primal	(b) Dual	(c) Prima dual	(d) None of the above
	(8)	If primal problem is a	e:		
		(a) Maximization Prol	blem	(b) Mixed Problem	
		(c) Minimization Prob	olem	(d) None of the above	
+	(9)	Transportation model	helps us in:		
		(a) finding nearest tran	sport office	(b) finding transportation of	cost between two cities
		(c) finding lowest tran	sportation cost	(d) None of the above	
•	(10)	The assignment proble	em is solved by:		
		(a) Simplex method		(b) Graphical method	
		(c) Vector method		(d) Hungarian method	
2.		Answer the following questions:			2×5=10
	(1)	Discuss scientific met			
	(2)	What is matrix form o			
+	(3)	Explain the following	:	41.5	
		(a) Infeasibility		(b) Degeneracy	

[P.T.O.]

(Maximum Marks · 80

- (4) Differentiate between primal and dual LPP.
- (5) Define:
 - (a) Loop

(b) Oriented path

Section-B

Answer the following questions:

12×5=60

Write major steps in the solution of LPP by graphical method.

OR

Using simplex method, solve

Maximize $z = 5x_1 + 3x_2$

Subject to constraint

$$x_1 + x_2 \le 2$$

$$5x_1 + 2x_2 \le 10$$

$$3x_1 + 8x_2 \le 12$$

and

$$x_1, x_2 \ge 0$$

4. Solve by penalty method or Big-M method

$$Maximize z = 2x_1 + x_2 + 3x_3$$

Subject to constraint

$$x_1 + x_2 + 2x_3 \le 5$$

$$2x_1 + 3x_2 + 4x_3 = 12$$
and
$$x_1, x_2, x_3 \ge 0$$

OR

Solve the following LPP, by the simplex dual algorithm

Min
$$z = x_1 + 2x_2 + 3x_3$$

S.t. $2x_1 - x_2 + x_3 \ge 4$
 $x_1 + x_2 + 2x_3 \le 8$
 $x_2 - x_3 \ge 2$
and $x_1, x_2, x_3 \ge 0$

5. Solve graphically, the following LPP:

min
$$Z = 3x_1 + 5x_2$$

S.t. $-3x_1 + 4x_2 \le 12$
 $2x_1 - x_2 \ge -2$
 $2x_1 + 3x_2 \ge 12$
 $x_1 \le 4, x_2 \ge 2$
and $x_1, x_2 \ge 0$

OR

Solve the following LPP

Maximize
$$Z = 40x + 35y$$
S.t.
$$2x + 3y \le 60$$

$$4x + 3y \le 96$$

$$4x + 35y \le 105$$
and
$$x, y \ge 0$$

PE-364 [3]

6. Solve the following assignment problem :

Max.

H Ш ΙV V Α В Task C D Е

OR

Solve minimal assignment problem whose effectiveness matrix is:

	I	II	III	IV
A	2	3	4	5
В	4	5	6	7
B C	7	8	9	8
D	3	5	8	4

7. Solve the following transportation problem:

To Supply From Demand

OR

Draw a network diagram on the basis of the following data:

Activity	Duration
1–2	2
1–4	2
1–7	1
2–3	4
3–6	1
4–5	5
4–8	8
5–6	4
6–9	3
7–8	3
8–9	5
9–10	2

Find the critical path, total duration and slack times.