PE-360

M.A./M.Sc. MATHEMATICS (Third Semester) EXAMINATION, DEC.-2021

Paper - I

INTEGRATION THEORY AND FUNCTIONAL ANALYSIS (I)

Time: Three hours] [Maximum Marks: 80

Note: Answer from both the Sections as directed. The figures in the right-hand margin indicate marks.

Section-A

- 1. Answer the following questions: 1×10=10
 - (1) Let $A \subseteq E \subseteq X$ such that A is measurable and $u(A) \le 0$, then $A \dots \dots$
 - (2) A countable union of positive set is......
 - (3) Every signed measure is......of two measures.
 - (4) The relation of absolutely continuous is...... and
 - (5) Let $f: X \to [-\infty, \infty]$ then the Radon Nikodym derivative of the measure v, w.r to μ is denoted by.......
 - (6) The σ algebra $A * is \dots$
 - (7) If $A \subseteq X$ and $B \subseteq Y$ then $A \times B \subseteq X \times Y$ is called.......
 - (8) If (X, A_1) and (Y, A_2) are measurable spaces, then..... is again a measurable space.
 - (9) Every section of measurable function is......
 - (10) Every absolutely continuous function f defined on [a, b] is......
- **2.** Answer the following questions :

 $2 \times 5 = 10$

- (1) Define signed measure.
- (2) If v is a finite signed measure and if μ is a signed measure such that $v << \mu$ corresponding to every positive number ε there is a positive number δ such that $|v|(E) < \varepsilon$ for every measurable set E with $|\mu|(E) < \delta$.
- (3) Write the statement of Tonelli's theorem.
- (4) Let $\{Ai \times Bi\}$ be a countable disjoint collection of measurable rectangles whose union is measurable rectangle $A \times B$. Then

$$\lambda(A \times B) = \Sigma \lambda(Ai \times Bi)$$

(5) Let μ be a Baire measure on a locally compact space X and E is a σ bounded Baire set in X. Then for $\varepsilon > 0$, there is a σ compact open set O with $E \subseteq O$ and $\mu(0 \sim E) < \varepsilon$.

Section-B

Answer all questions:

 $12 \times 5 = 60$

3. State and prove Hahn decomposition theorem.

OR

If μ is finite Baire measure on the real line, then its cumulative distribution function F is monotone increasing bounded function which is continuous on right and $x \xrightarrow{\lim} -\infty F(x) = 0$.

[P.T.O.]

[2]

State and prove Lebesgue decomposition theorem.

OR

Let μ be a measure defined on σ algebra. A containing the Baire sets. Assume that either μ is quasi regular or μ is inner regular. Then for each $E \in A$ with $\mu(E) < \infty$ there is a Baire set B with $\mu(E\Delta B) = 0$.

5. The intersection of a sequence of inner regular sets of finite measure is inner regular. Also, the intersection of a decreasing sequence of outer regular sets of finite measure is outer regular.

OR

State and prove caretheodory extension theorem.

6. Using Fubini's theorem, show that:

$$\int_0^1 dx \int_0^1 \frac{x^2 - y^2}{x^2 + y^2} dy = \int_0^1 dy \int_0^1 \frac{x^2 - y^2}{x^2 + y^2} dx$$

OR

Let \u03c4 be a borel measure which is finite on compact sets. Then the following are equivalent:

- (1) μ is outer regular on σ bounded sets
- (2) μ is inner regular on σ bounded sets
- 7. State and prove Tunnell's theorem.

OR

State and prove Riesz representation theorem.

https://www.abvvonline.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पायें, Paytm or Google Pay से